
Converting Grayscale Images to RGB Images Using Various

Autoencoder Architectures

Christian Durant, Abhinav Kotta, Jackson Mazer

January 29, 2024

Abstract

In this project, we designed and experimented with various autoencoder architectures aimed
toward converting grayscale images into their RGB counterparts. We utilized the 32x32 RGB
images of the CIFAR10 dataset to test the models’ conversion of their grayscale versions into their
original RGB formats. The focus of the experimentation was to create a versatile model capable
of generating RGB images from newly seen grayscale images and to identify the components of an
autoencoder architecture that produce the best results. We tested a 3-layer convolutional model,
a linear latent model, and a CNN latent model, and determined the 3-layer convolutional model
produced the superior reconstructed colorized images.

1 Introduction

Throughout history, people have created brilliantly-colored architecture, clothing, paintings, and
more. Any medium in which human creativity could be expressed witnessed an explosion of color.
While we see their architecture as stark white in modern times, we know the ancient Romans bathed
their statues, temples, and homes in splashes of bright colored paints, for example. Art movements
throughout the centuries have always brought with them new trends and discoveries in color theory
and creativity. Photography, then, became the next medium for popular colorful expression.

Color photography has been possible for over one hundred years, and has been widely found
throughout the world for over fifty. Starting in the mid-1960s, the advent of widely-used color cam-
era technology was brought to the business market, and in 1990, the first digital color camera was
brought to the consumer market. Since then, camera technology has only improved to the point that
the average person has a 12–48 megapixel camera in their pocket. But with such widely accessible
high-quality color photography, the desire to colorize photos from before this time has become that
much more popular. This desire is achievable with an autoencoder, and it is this desire that we sought
to fulfill with this project.

2 Method

An autoencoder, or convolutional encoder-decoder model, is a type of layered convolutional neural
network designed to compress and reconstruct an image. In doing so, the autoencoder seeks to predict
the same image as an output as what it received as an input. As opposed to the typical one dataset
input used with a convolutional neural network, we use two datasets when colorizing grayscale images.
By presenting the encoder with colored images to learn the features from, and only then giving it
grayscale images to reconstruct, the decoder will build back to the images using the color features
learned initially. In this way, the autoencoder will break down a black-and-white image and build up
a color image.

As a team, we decided to each develop a slightly different architecture for the encoder and decoder
and each test them independently using the same dataset. Once that was completed, we would compare
and contrast the results from each architecture and determine which was best for reconstruction.

1

3 Experiments

3.1 Dataset

The dataset we used for the autoencoder model was the CIFAR-10 dataset. This is a dataset
composed of sixty-thousand 32x32 colored images separated into ten classes of five thousand training
and one thousand test images each. It would make for a sufficient and easily-accessible dataset that
isn’t so big that training would take longer than necessary.

3.2 Evaluation metrics

For each of the models that we trained and employed, we used the mean-squared error loss function
to evaluate the disparity between the autoencoders’ output RGB images generated from their grayscale
inputs and the original RGB images from which the grayscale images were derived. This method
of evaluation allowed us to assess the autoencoders’ abilities to generate the correct proportions and
intensities of the three color channels of the outputs. We also took a more visual approach to evaluating
the performance of the models by performing a direct comparison between the original RGB images
and the output RGB images as shown below.

3.3 Results

One of the implementations of the autoencoder was an implementation using three convolutional
layers as well as a dense layer in each of the encoder and decoder in Keras. The convolutional layers
contain 64, 128, and 256 nodes respectively. This is a fairly standard implementation, and it produced
quite good results with minimal loss and maximal accuracy.

Below are some images from the CIFAR-10 dataset next to the resultant colorized images produced
by the autoencoder.

Figure 1: Images from the RGB test dataset, the grayscale test dataset, and the colorized results,
respectively from the original model.

Figure 2: Output from the autoencoder architecture without a dynamically changing learning rate.

2

Further implementations of the autoencoder model attempted to identify the potential difference
in performance between a fully connected (Dense) latent representation and a convolutional latent
representation within the autoencoder architecture.

Two models were employed for such testing. One model had a fully-connected latent representation
of a Linear layer consisting of 256 output nodes, while the other model had a fully convolutional latent
representation consisting of 256 3x3 filters. For the fully connected latent representation, a second
layer was required to upscale back to the number of neurons required for convolutional computation.

Below are the outputs of two autoencoder models, implemented in PyTorch.

Figure 3: Test input and colorized output from the autoencoder architecture containing a fully-
connected latent representation.

Figure 4: Test input and colorized output from the autoencoder architecture containing a CNN
representation.

3.4 Analysis and discussions

Upon examining the results of all of the models, it became more apparent what components of an
autoencoder’s architecture are most necessary to transform grayscale images into RGB format. The
convolutional latent representation performed much better than the fully connected latent representa-
tion and also produced clearer images than that of the original configuration (Figure 1), as well. The
original configuration, consisting of both convolutional layers and dense layers (similar to model 2),
did manage to capture more color than the other two models, however.

The following analysis describes in detail each of the architectures that were employed throughout
the experimentation as well as the change in the loss values during training. We can examine this
information to determine each of the model’s efficiency in learning to take the input grayscale images
and generate their RGB counterparts.

3

3.4.1 Model Architecture and Training

Figure 5: First implementation of the autoencoder using three convolutional layers and a dense layer
in both the encoder and the decoder.

Figure 6: Loss values of the first model over the 30 epochs for which it was trained.

4

Figure 7: Loss values of the first model over the 30 epochs for which it was trained with a static
learning rate.

Figure 8: Architecture of the autoencoder model containing a Linear latent representation.

5

Figure 9: Loss values of the FC latent space model over the 20 epochs for which it was trained.

Figure 10: Architecture of the autoencoder model containing a convolutional latent representation.

6

Figure 11: Loss values of the CNN latent space model over the 20 epochs for which it was trained.

As shown in Figures 5 and 6, the first architecture was capable of achieving a minimum loss on the
training set of approximately 0.004, allowing it to generate the RGB images as shown in the results.

3.4.2 Comparisons

Figures 1-4 display the difference between having n fully connected and convolutional latent space
representation within the autoencoder. The CNN architecture managed to achieve a minimum loss
comparable to that of the first model at approximately 0.005, while the FC architecture struggled to
even get below 0.01. The implications of this difference are demonstrated in the output, where the
output of the model with the convolutional latent space is much more defined and clear than that of
the model with the linear latent space. Additionally, the vibrancy of the images reconstructed using
the model with the three convolutional layers is significantly more notable than their counterparts in
the other architectures.

It is also worth noting that the model containing the fully-connected latent space had significantly
more parameters than the other models that were employed, causing it to take more time to train
during experimentation. The model with the convolutional latent space, on the other hand, had
even fewer parameters than the first model but still achieved a comparable loss, suggesting that
further modification to the architecture could yield similar or better results on the test set with a fully
convolutional model.

Overall, it’s clear that the 3-convolutional layer architecture produced the best-looking results.
While its loss was comparable to that of the CNN latent space model, both at the 20 epoch mark and
what could be extrapolated to be the loss beyond that mark for the latter, the apparent reconstruction
was leagues ahead in the former. The performance of the linear latent representation architecture,
then, is insufficient in both categories.

3.4.3 Discussion

The experimentation with 3-layer autoencoders, fully connected (Dense) latent, and convolutional
representation of models yielded significant insights into its performance and adaptability in grayscale
image colorization.

The observation that a static learning rate showed a slight degradation in the colorization quality
underlines the importance of adaptive learning strategies. Dynamically adjusting the learning rate

7

when the loss becomes stationary for a certain number of epochs seems crucial for maintaining optimal
convergence and enhancing the intricacies of colorized outputs, although makes a minimal difference
when compared to other architectures.

The comparison between fully connected and convolutional latent spaces highlighted the superiority
of convolutional architectures for capturing intricate spatial information. The convolutional latent
space exhibited a more effective representation of image features by increasing the image quality
compared to the fully connected latent representation.

Despite variations in architecture and latent space representation, the robustness and performance
of the conventional 3-layer autoencoder stood out. Its popularity stems from its ability to strike a
balance between model complexity and efficiency, offering a favorable trade-off for grayscale image
colorization tasks. The adaptability and reliability of this architecture in consistently producing high-
quality colorized outputs make it a preferred choice among the experimented configurations.

4 Conclusion

4.1 Description

In this work, we investigate the viability of multiple different autoencoder architectures for the
colorization of grayscale images. We have tested a 3-layer model with and without modifications to its
learning rate, and two latent space models, both linear and CNN-composed. While the fixed learning
rate slightly impacted colorization quality, the comparative analysis underscored the effectiveness of the
3-layer autoencoder architecture. The superior performance of the convolutional latent space reaffirmed
its significance in preserving spatial information crucial for accurate colorization. Future research
focusing on hybrid architectures integrating dynamic learning rates with convolutional latent spaces
holds promise for further enhancing colorization fidelity. These insights serve as valuable guidelines for
optimizing autoencoder architectures for grayscale image colorization tasks, paving the way for more
refined and realistic colorization techniques in the future.

4.2 What I Learned

Throughout this endeavor, the journey of implementing the 3-layer convolutional autoencoder
served as a profound learning experience. The process illuminated the significance of hands-on explo-
ration in unfamiliar domains. I gained a comprehensive understanding of autoencoder architectures
and their application in grayscale image colorization, delving into the intricate workings of TensorFlow
and Keras along the way.

The introduction of a fixed learning rate into the model shed light on the nuanced interplay between
training strategies and resulting image quality, underscoring the importance of adaptive learning mech-
anisms in optimizing model performance. This journey not only deepened my technical proficiency but
also honed my ability to contribute meaningfully to collaborative research efforts, synthesizing findings
and insights to inform the conclusions and future directions of our project. Overall, this experience
reinforced the value of curiosity-driven learning and collaborative teamwork in navigating complex
technical landscapes.

5 Contribution

5.1 Code

Below is the code for the different architectures examined in this work.

5.1.1 Three Convolutional Layer Implementation With Learning Rate Modification

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import os

4 from keras.layers import Dense , Input

5 from keras.layers import Conv2D , Flatten

6 from keras.layers import Reshape , Conv2DTranspose

8

7 from keras.models import Model

8 from keras.callbacks import ReduceLROnPlateau

9 from keras.callbacks import ModelCheckpoint

10 from keras.datasets import cifar10

11 from keras import backend as K

12
13 ’---------------’

14 ’PREPARING THE DATASETS ’

15 ’---------------’

16 # Load in the images from the cifar10 dataset.

17 (x_train , _), (x_test , _) = cifar10.load_data ()

18
19 # Turn the images in the test dataset to grayscale for a new test dataset

20 x_train_gray = np.dot(x_train [... ,:3], [0.299 , 0.587 , 0.114])

21 x_test_gray = np.dot(x_test [...,:3], [0.299 , 0.587, 0.114])

22
23 # Get the size of the images

24 img_rows = x_train.shape [1]

25 img_cols = x_train.shape [2]

26 channels = x_train.shape [3]

27
28 ’---------------’

29 ’PLOTTING THE DATASETS ’

30 ’---------------’

31 # Store 100 images of the color test dataset

32 datasetC = x_test [:100]

33 datasetC = datasetC.reshape ((10, 10, img_rows , img_cols , channels))

34 datasetC = np.vstack ([np.hstack(i) for i in datasetC])

35
36 # Plot 100 images of the color test dataset

37 plt.figure ()

38 plt.axis(’off’)

39 plt.title(’Test Images (Color)’)

40 plt.imshow(datasetC , interpolation=’none’)

41 plt.show()

42
43 # Store 100 images of the grayscale test dataset

44 datasetG = x_test_gray [:100]

45 datasetG = datasetG.reshape ((10, 10, img_rows , img_cols))

46 datasetG = np.vstack ([np.hstack(i) for i in datasetG])

47
48 # Plot 100 images of the grayscale test dataset

49 plt.figure ()

50 plt.axis(’off’)

51 plt.title(’Test Images (Grayscale)’)

52 plt.imshow(datasetG , interpolation=’none’, cmap=’gray’)

53 plt.show()

54
55 ’---------------’

56 ’PREPARING FOR MODEL INPUT/OUTPUT ’

57 ’---------------’

58 # Normalize and reshape the color datasets

59 x_train = x_train.astype(’float32 ’) / 255

60 x_test = x_test.astype(’float32 ’) / 255

61 x_train = x_train.reshape(x_train.shape [0], img_rows , img_cols , channels)

62 x_test = x_test.reshape(x_test.shape[0], img_rows , img_cols , channels)

63
64 # Normalize and reshape the grayscale datasets

65 x_train_gray = x_train_gray.astype(’float32 ’) / 255

66 x_test_gray = x_test_gray.astype(’float32 ’) / 255

67 x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], img_rows , img_cols , 1)

68 x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], img_rows , img_cols , 1)

69
70 # Define parameters

71 input_shape = (img_rows , img_cols , 1)

72 batch_size = 32

73 kernel_size = 3

74 latent_dim = 256

75 layer_filters = [64, 128, 256]

76
77 ’---------------’

9

78 ’BUILDING THE ENCODER MODEL ’

79 ’---------------’

80
81 # Build the model

82 inputs = Input(shape=input_shape , name=’encoder_input ’)

83 x = inputs

84
85 # 3 Convolution layers: 64 filters , 128 filters , 256 filters

86 for filters in layer_filters:

87 x = Conv2D(filters=filters ,

88 kernel_size=kernel_size ,

89 strides=2,

90 activation=’relu’,

91 padding=’same’)(x)

92
93 # Reshape to 4x4x256 for processing , to eventually be shaped back into 32 x32x3

94 shape = K.int_shape(x)

95
96 # Thank you for resources online on how to do this type of thing.

97 x = Flatten ()(x)

98 latent = Dense(latent_dim , name=’latent_vector ’)(x)

99
100 encoder = Model(inputs , latent , name=’encoder ’)

101 encoder.summary ()

102
103 ’---------------’

104 ’BUILDING THE DECODER MODEL ’

105 ’---------------’

106 latent_inputs = Input(shape =(latent_dim ,), name=’decoder_input ’)

107 x = Dense(shape [1]* shape [2]* shape [3])(latent_inputs)

108 x = Reshape ((shape[1], shape [2], shape [3]))(x)

109
110 # Three convolution layers: 256 filters , 128 filters , 64 filters

111 for filters in layer_filters [:: -1]:

112 x = Conv2DTranspose(filters=filters ,

113 kernel_size=kernel_size ,

114 strides=2,

115 activation=’relu’,

116 padding=’same’)(x)

117
118 outputs = Conv2DTranspose(filters=channels ,

119 kernel_size=kernel_size ,

120 activation=’sigmoid ’,

121 padding=’same’,

122 name=’decoder_output ’)(x)

123
124 decoder = Model(latent_inputs , outputs , name=’decoder ’)

125 decoder.summary ()

126
127 ’---------------’

128 ’THE AUTOENCODER ’

129 ’---------------’

130 autoencoder = Model(inputs , decoder(encoder(inputs)), name=’autoencoder ’)

131 autoencoder.summary ()

132
133 # Save as a new model any time the loss improves.

134 save_dir = os.path.join(os.getcwd (), ’saved_models ’)

135 model_name = ’Model{epoch :02d}.h5’

136 if not os.path.isdir(save_dir):

137 os.makedirs(save_dir)

138 filepath = os.path.join(save_dir , model_name)

139
140 # Reduce learning rate by sqrt (0.1) if the loss does not improve in 5 epochs

141 lr_reducer = ReduceLROnPlateau(factor=np.sqrt (0.1) ,

142 cooldown=0,

143 patience=5,

144 verbose=1,

145 min_lr =0.5e-6)

146
147 # Save weights

148 checkpoint = ModelCheckpoint(filepath=filepath ,

10

149 monitor=’val_loss ’,

150 verbose=1,

151 save_best_only=True)

152
153 # Mean Square Error (MSE) loss function , Adam optimizer

154 autoencoder.compile(loss=’mse’, optimizer=’adam’)

155
156 # Called every epoch

157 callbacks = [lr_reducer , checkpoint]

158
159 # Train the autoencoder

160 autoencoder.fit(x_train_gray ,

161 x_train ,

162 validation_data =(x_test_gray , x_test),

163 epochs =30,

164 batch_size=batch_size ,

165 callbacks=callbacks)

166
167 # Predict the autoencoder output from test data

168 x_decoded = autoencoder.predict(x_test_gray)

169
170 # Display the 1st 100 colorized images

171 datasetGtoC = x_decoded [:100]

172 datasetGtoC = datasetGtoC.reshape ((10, 10, img_rows , img_cols , channels))

173 datasetGtoC = np.vstack ([np.hstack(i) for i in datasetGtoC])

174 plt.figure ()

175 plt.axis(’off’)

176 plt.title(’Predicted Colorized Images ’)

177 plt.imshow(datasetGtoC , interpolation=’none’)

178 plt.show()

5.1.2 Three Convolutional Layer Implementation Without Learning Rate Modification

1 ’’’Colorization autoencoder

2
3 Used to train gray scale images of CIFAR -10 dataset to make them colorized

4 ’’’

5
6 from __future__ import absolute_import

7 from __future__ import division

8 from __future__ import print_function

9
10 from tensorflow.keras.layers import Dense , Input

11 from tensorflow.keras.layers import Conv2D , Flatten

12 from tensorflow.keras.layers import Reshape , Conv2DTranspose

13 from tensorflow.keras.models import Model

14 from tensorflow.python.keras.callbacks import ReduceLROnPlateau

15 from tensorflow.python.keras.callbacks import ModelCheckpoint

16 from tensorflow.keras.datasets import cifar10

17 from tensorflow.keras.utils import plot_model

18 from tensorflow.keras import backend as K

19
20 import numpy as np

21 import matplotlib.pyplot as plt

22 import os

23
24 def rgb2gray(rgb):

25 """ Convert from color image (RGB) to grayscale .

26 """

27 return np.dot(rgb[... ,:3], [0.299 , 0.587, 0.114])

28
29
30 # load the CIFAR10 data

31 (x_train , _), (x_test , _) = cifar10.load_data ()

32
33 # input image dimensions

34 # we assume data format " channels_last "

35 img_rows = x_train.shape [1]

36 img_cols = x_train.shape [2]

37 channels = x_train.shape [3]

38

11

39 # create saved_images folder

40 imgs_dir = ’saved_images ’

41 save_dir = os.path.join(os.getcwd (), imgs_dir)

42 if not os.path.isdir(save_dir):

43 os.makedirs(save_dir)

44
45 # display the 1st 100 input images (color and gray)

46 imgs = x_test [:100]

47 imgs = imgs.reshape ((10, 10, img_rows , img_cols , channels))

48 imgs = np.vstack ([np.hstack(i) for i in imgs])

49 plt.figure ()

50 plt.axis(’off’)

51 plt.title(’Test color images (Ground Truth)’)

52 plt.imshow(imgs , interpolation=’none’)

53 plt.savefig(’%s/test_color.png’ % imgs_dir)

54 plt.show()

55
56 # convert color train and test images to gray

57 x_train_gray = rgb2gray(x_train)

58 x_test_gray = rgb2gray(x_test)

59
60 # display grayscale version of test images

61 imgs = x_test_gray [:100]

62 imgs = imgs.reshape ((10, 10, img_rows , img_cols))

63 imgs = np.vstack ([np.hstack(i) for i in imgs])

64 plt.figure ()

65 plt.axis(’off’)

66 plt.title(’Test gray images (Input)’)

67 plt.imshow(imgs , interpolation=’none’, cmap=’gray’)

68 plt.savefig(’%s/test_gray.png’ % imgs_dir)

69 plt.show()

70
71
72 # normalize output train and test color images

73 x_train = x_train.astype(’float32 ’) / 255

74 x_test = x_test.astype(’float32 ’) / 255

75
76 # normalize input train and test grayscale images

77 x_train_gray = x_train_gray.astype(’float32 ’) / 255

78 x_test_gray = x_test_gray.astype(’float32 ’) / 255

79
80 # reshape images to row x col x channel for CNN output/ validation

81 x_train = x_train.reshape(x_train.shape [0], img_rows , img_cols , channels)

82 x_test = x_test.reshape(x_test.shape[0], img_rows , img_cols , channels)

83
84 # reshape images to row x col x channel for CNN input

85 x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], img_rows , img_cols , 1)

86 x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], img_rows , img_cols , 1)

87
88 # network parameters

89 input_shape = (img_rows , img_cols , 1)

90 batch_size = 32

91 kernel_size = 3

92 latent_dim = 256

93 # encoder/decoder number of CNN layers and filters per layer

94 layer_filters = [64, 128, 256]

95
96 # build the autoencoder model

97 # first build the encoder model

98 inputs = Input(shape=input_shape , name=’encoder_input ’)

99 x = inputs

100 # stack of Conv2D (64) -Conv2D (128) -Conv2D (256)

101 for filters in layer_filters:

102 x = Conv2D(filters=filters ,

103 kernel_size=kernel_size ,

104 strides=2,

105 activation=’relu’,

106 padding=’same’)(x)

107
108 # shape info needed to build decoder model so we don ’t do hand computation

109 # the input to the decoder ’s first Conv2DTranspose will have this shape

12

110 # shape is (4, 4, 256) which is processed by the decoder back to (32, 32, 3)

111 shape = K.int_shape(x)

112
113 # generate a latent vector

114 x = Flatten ()(x)

115 latent = Dense(latent_dim , name=’latent_vector ’)(x)

116
117 # instantiate encoder model

118 encoder = Model(inputs , latent , name=’encoder ’)

119 encoder.summary ()

120
121 # build the decoder model

122 latent_inputs = Input(shape =(latent_dim ,), name=’decoder_input ’)

123 x = Dense(shape [1]* shape [2]* shape [3])(latent_inputs)

124 x = Reshape ((shape[1], shape [2], shape [3]))(x)

125
126 # stack of Conv2DTranspose (256) -Conv2DTranspose (128) -Conv2DTranspose (64)

127 for filters in layer_filters [:: -1]:

128 x = Conv2DTranspose(filters=filters ,

129 kernel_size=kernel_size ,

130 strides=2,

131 activation=’relu’,

132 padding=’same’)(x)

133
134 outputs = Conv2DTranspose(filters=channels ,

135 kernel_size=kernel_size ,

136 activation=’sigmoid ’,

137 padding=’same’,

138 name=’decoder_output ’)(x)

139
140 # instantiate decoder model

141 decoder = Model(latent_inputs , outputs , name=’decoder ’)

142 decoder.summary ()

143
144 # autoencoder = encoder + decoder

145 # instantiate autoencoder model

146 autoencoder = Model(inputs , decoder(encoder(inputs)), name=’autoencoder ’)

147 autoencoder.summary ()

148
149 # prepare model saving directory.

150 save_dir = os.path.join(os.getcwd (), ’saved_models ’)

151 model_name = ’colorized_ae_model .{epoch :03d}.h5’

152 if not os.path.isdir(save_dir):

153 os.makedirs(save_dir)

154 filepath = os.path.join(save_dir , model_name)

155
156 # save weights for future use (e.g. reload parameters w/o training)

157 checkpoint = ModelCheckpoint(filepath=filepath ,

158 monitor=’val_loss ’,

159 verbose=1,

160 save_best_only=True)

161
162 # Mean Square Error (MSE) loss function , Adam optimizer

163 autoencoder.compile(loss=’mse’, optimizer=’adam’)

164
165 # called every epoch

166 callbacks = [checkpoint]

167
168 # train the autoencoder

169 autoencoder.fit(x_train_gray ,

170 x_train ,

171 validation_data =(x_test_gray , x_test),

172 epochs =30,

173 batch_size=batch_size ,

174 callbacks=callbacks)

175
176 # predict the autoencoder output from test data

177 x_decoded = autoencoder.predict(x_test_gray)

178
179 # display the 1st 100 colorized images

180 imgs = x_decoded [:100]

13

181 imgs = imgs.reshape ((10, 10, img_rows , img_cols , channels))

182 imgs = np.vstack ([np.hstack(i) for i in imgs])

183 plt.figure ()

184 plt.axis(’off’)

185 plt.title(’Colorized test images (Predicted)’)

186 plt.imshow(imgs , interpolation=’none’)

187 plt.savefig(’%s/colorized.png’ % imgs_dir)

188 plt.show()

5.1.3 Linear and Convolutional Latent Space Implementations

1 #!/ usr/bin/env python

2 # coding: utf -8

3
4 # In [1]:

5
6
7 import time

8 import torch

9 import torch.nn as nn

10 import torch.nn.functional as F

11 import matplotlib.pyplot as plt

12 import numpy as np

13 import random

14 from torchsummary import summary

15
16
17 # In [2]:

18
19
20 # Information about device

21 print(torch.cuda.device_count ())

22 print(torch.cuda.current_device ())

23 print(torch.cuda.device (0))

24 print(torch.cuda.get_device_name (0))

25
26 use_cuda = torch.cuda.is_available ()

27 print(use_cuda)

28 # Set proper device based on cuda availability

29 device = torch.device("cuda" if use_cuda else "cpu")

30 print("Torch device selected: ", device)

31
32
33 # In [3]:

34
35
36 # Construct Autoencoder

37 class Net1(nn.Module):

38 def __init__(self):

39 super(Net1 , self).__init__ ()

40
41 # Define layers of the autoencoder neural network

42
43 # Encoder

44 self.conv1 = nn.Conv2d(1, 64, 3, padding =1)

45 self.conv2 = nn.Conv2d (64, 128, 3, padding =1)

46 self.maxpool1 = nn.MaxPool2d (2)

47 self.conv3 = nn.Conv2d (128, 256, 3, padding =1)

48 self.maxpool2 = nn.MaxPool2d (2)

49
50 # Code (Latent Representation)

51 self.fc1 = nn.Linear (256*8*8 , 256)

52 self.fc2 = nn.Linear (256, 256*8*8)

53
54 # Decoder

55 self.upsample1 = nn.Upsample(scale_factor =2, mode=’bilinear ’)

56 self.deconv1 = nn.ConvTranspose2d (256, 128, 3, padding =1)

57 self.upsample2 = nn.Upsample(scale_factor =2, mode=’bilinear ’)

58 self.deconv2 = nn.ConvTranspose2d (128, 64, 3, padding =1)

59 self.deconv3 = nn.ConvTranspose2d (64, 3, 3, padding =1)

60

14

61 def forward(self , X):

62
63 # Encoder

64 output = F.relu(self.conv1(X))

65 output = F.relu(self.maxpool1(self.conv2(output)))

66 output = F.relu(self.maxpool2(self.conv3(output)))

67
68 # Latent Representation

69 output = torch.flatten(output ,1) # Flatten

70 output = F.relu(self.fc1(output))

71 output = F.relu(self.fc2(output))

72 output = torch.reshape(output , (-1, 256, 8, 8)) # Reshape

73
74 # Decoder

75 output = F.relu(self.deconv1(self.upsample1(output)))

76 output = F.relu(self.deconv2(self.upsample2(output)))

77 output = F.sigmoid(self.deconv3(output))

78
79 return output

80
81 # Construct Autoencoder

82 class Net2(nn.Module):

83 def __init__(self):

84 super(Net2 , self).__init__ ()

85
86 # Define layers of the autoencoder neural network

87
88 # Encoder

89 self.conv1 = nn.Conv2d(1, 64, 3, padding =1)

90 self.conv2 = nn.Conv2d (64, 128, 3, padding =1)

91 self.maxpool1 = nn.MaxPool2d (2)

92 self.conv3 = nn.Conv2d (128, 256, 3, padding =1)

93
94 # Code (Latent Representation)

95 self.conv4 = nn.Conv2d (256, 256, 3, padding =1)

96
97 # Decoder

98 self.deconv1 = nn.ConvTranspose2d (256, 128, 3, padding =1)

99 self.upsample1 = nn.Upsample(scale_factor =2, mode=’bilinear ’)

100 self.deconv2 = nn.ConvTranspose2d (128, 64, 3, padding =1)

101 self.deconv3 = nn.ConvTranspose2d (64, 3, 3, padding =1)

102
103 def forward(self , X):

104
105 # Encoder

106 output = F.relu(self.conv1(X))

107 output = F.relu(self.maxpool1(self.conv2(output)))

108 output = F.relu(self.conv3(output))

109
110 # Latent Representation

111 output = self.conv4(output)

112
113 # Decoder

114 output = F.relu(self.deconv1(output))

115 output = F.relu(self.deconv2(self.upsample1(output)))

116 output = F.sigmoid(self.deconv3(output))

117
118 return output

119
120
121 # In [4]:

122
123
124 import torchvision

125 import torchvision.transforms as transforms

126 import torch.optim as optim

127 from torchvision.transforms.functional import rgb_to_grayscale

128
129
130 # In [5]:

131

15

132
133 # Transforms

134 train_transform = transforms.Compose(

135 [transforms.ToTensor (),

136 transforms.RandomRotation (15)]

137)

138
139 test_transform = transforms.Compose(

140 [transforms.ToTensor ()]

141)

142
143 # Load in CIFAR10 data , splitting training and test data and applying transforms

144 train_data = torchvision.datasets.CIFAR10("./", train= True , transform =

train_transform , download = True)

145 test_data = torchvision.datasets.CIFAR10("./", train= False , transform =

test_transform , download = True)

146
147 # Create dataloaders for loading in data in batches of size mini_batch_size

148 mini_batch_size = 100

149 train_loader = torch.utils.data.DataLoader(train_data , batch_size=mini_batch_size ,

shuffle=True , num_workers =2)

150 test_loader = torch.utils.data.DataLoader(test_data , batch_size=mini_batch_size ,

shuffle=False , num_workers =2)

151
152
153 # In [6]:

154
155
156 # Define the training function

157 def train(model , num_epochs , optimizer , loss_func):

158 # Set model to training mode

159 model.train ()

160 losses = []

161
162 for i in range(num_epochs):

163 total_loss = 0

164
165 for (images , _) in train_loader:

166 images = images.to(device) # Push tensors to GPU

167 grayscale_images = rgb_to_grayscale(images) # Convert images to grayscale

168 optimizer.zero_grad () # Zero the gradients

169 outputs = model(grayscale_images) # Forward pass

170 loss = loss_func(outputs , images) # Calculate loss

171 loss.backward () # Backpropagation

172 optimizer.step() # Update weights

173 total_loss += loss.item() # Accumulate loss

174
175 # Save loss for graphing

176 losses.append(total_loss / len(train_loader))

177 print(f’(Epoch {i+1}) Training Loss: {total_loss / len(train_loader)} Test

Loss: {test(model)}’)

178
179 return losses

180
181 # Define function for applying model to test data and returning the accuracy

182 def test(model):

183 # Set model to evaluation mode

184 model.eval()

185 total_loss = 0

186
187 # Test on test set

188 for (images , _) in test_loader:

189 images = images.to(device) # Push tensors to GPU

190 grayscale_images = rgb_to_grayscale(images) # Convert images to grayscale

191 outputs = model(grayscale_images) # Forward pass

192 loss = F.mse_loss(outputs , images) # Calculate loss

193 total_loss += loss.item() # Accumulate loss

194
195 return total_loss/len(test_loader)

196
197

16

198 # In [7]:

199
200
201 # Define hyperparameters

202 learning_rate = 1e-4

203 num_epochs = 20

204
205
206 # In [10]:

207
208
209 # Create the model with FC latent code

210 net1 = Net1().to(device)

211
212 # Print a summary of the model WIP

213 summary(net1 , (1, 32, 32))

214
215 # Define the loss function and optimizer

216 loss_func = nn.MSELoss ()

217 optimizer = optim.Adam(net1.parameters (), lr=learning_rate)

218
219 # Load model , if saved parameters exist

220 try:

221 net1.load_state_dict(torch.load("./saved models/net1.pth"))

222 except:

223 # Perform training

224 training_losses = train(net1 , num_epochs , optimizer , loss_func)

225
226 # Save model

227 torch.save(net1.state_dict (), ’./saved models/net1.pth’)

228
229 # Prepare model for evaluation

230 net1.eval()

231
232
233 # In [11]:

234
235
236 # Plot the losses over epochs for model 1

237 plt.plot(training_losses)

238 plt.title("Training Loss vs Epochs")

239 plt.xlabel("# Epochs")

240 plt.ylabel("Loss")

241 plt.show()

242
243
244 # In [12]:

245
246
247 # Create the model with CNN latent code

248 net2 = Net2().to(device)

249
250 # Print a summary of the model WIP

251 summary(net2 , (1, 32, 32))

252
253 # Define the loss function and optimizer

254 loss_func = nn.MSELoss ()

255 optimizer = optim.Adam(net2.parameters (), lr=learning_rate)

256
257 # Load model , if saved parameters exist

258 try:

259 net2.load_state_dict(torch.load("./saved models/net2.pth"))

260 except:

261 # Perform training

262 training_losses = train(net2 , num_epochs , optimizer , loss_func)

263
264 # Save model

265 torch.save(net2.state_dict (), ’./saved models/net2.pth’)

266
267 # Prepare model for evaluation

268 net2.eval()

17

269
270
271 # In [13]:

272
273
274 # Plot the losses over epochs for model 2

275 plt.plot(training_losses)

276 plt.title("Training Loss vs Epochs")

277 plt.xlabel("# Epochs")

278 plt.ylabel("Loss")

279 plt.show()

280
281
282 # In[]:

283
284
285 # Grab images for testing

286 test_images , _ = next(iter(test_loader))

287
288
289 # In[]:

290
291
292 ### Test Net1 ###

293
294 # Display images to be tested

295 display_test = np.array([transforms.ToPILImage ()(img) for img in test_images])

296 display_test = display_test.reshape ((10, 10, 32, 32, 3))

297 display_test = np.vstack ([np.hstack(i) for i in display_test])

298 plt.figure ()

299 plt.axis(’off’)

300 plt.title(’Test Images (RGB)’)

301 plt.imshow(display_test , interpolation=’none’)

302 plt.show()

303
304 # Convert RGB test images into grayscale

305 grayscale_images = rgb_to_grayscale(test_images).to(device)

306
307 # Display images in grayscale

308 display_test = np.array([transforms.ToPILImage ()(img) for img in grayscale_images])

309 display_test = display_test.reshape ((10, 10, 32, 32, 1))

310 display_test = np.vstack ([np.hstack(i) for i in display_test])

311 plt.figure ()

312 plt.axis(’off’)

313 plt.title(’Test Images (Grayscale)’)

314 plt.imshow(display_test , interpolation=’none’, cmap=’gray’)

315 plt.show()

316
317 # Run model on grayscale images

318 output = net1(grayscale_images)

319
320 # Display images after decoding

321 display_test = np.array([transforms.ToPILImage ()(img) for img in output])

322 display_test = display_test.reshape ((10, 10, 32, 32, 3))

323 display_test = np.vstack ([np.hstack(i) for i in display_test])

324 plt.figure ()

325 plt.axis(’off’)

326 plt.title(’Test Images (FC Code Autoencoder)’)

327 plt.imshow(display_test , interpolation=’none’)

328 plt.show()

329
330
331 # In[]:

332
333
334 ### Test Net2 ###

335
336 # Display images to be tested

337 display_test = np.array([transforms.ToPILImage ()(img) for img in test_images])

338 display_test = display_test.reshape ((10, 10, 32, 32, 3))

339 display_test = np.vstack ([np.hstack(i) for i in display_test])

18

340 plt.figure ()

341 plt.axis(’off’)

342 plt.title(’Test Images (RGB)’)

343 plt.imshow(display_test , interpolation=’none’)

344 plt.show()

345
346 # Convert RGB test images into grayscale

347 grayscale_images = rgb_to_grayscale(test_images).to(device)

348
349 # Display images in grayscale

350 display_test = np.array([transforms.ToPILImage ()(img) for img in grayscale_images])

351 display_test = display_test.reshape ((10, 10, 32, 32, 1))

352 display_test = np.vstack ([np.hstack(i) for i in display_test])

353 plt.figure ()

354 plt.axis(’off’)

355 plt.title(’Test Images (Grayscale)’)

356 plt.imshow(display_test , interpolation=’none’, cmap=’gray’)

357 plt.show()

358
359 # Run model on grayscale images

360 output = net2(grayscale_images)

361
362 # Display images after decoding

363 display_test = np.array([transforms.ToPILImage ()(img) for img in output])

364 display_test = display_test.reshape ((10, 10, 32, 32, 3))

365 display_test = np.vstack ([np.hstack(i) for i in display_test])

366 plt.figure ()

367 plt.axis(’off’)

368 plt.title(’Test Images (Fully CNN Autoencoder)’)

369 plt.imshow(display_test , interpolation=’none’)

370 plt.show()

5.2 My Contribution

In our pursuit of grayscale image colorization, my primary contribution revolved around implement-
ing a pivotal component: the 3-layer convolutional autoencoder. Our team collectively determined
autoencoders as the optimal approach for this task, and I undertook the responsibility of translating
this decision into a functional model using TensorFlow and Keras. Despite my initial unfamiliarity
with these tools, extensive research and learning enabled the successful implementation of the model.
A notable aspect of my contribution was incorporating a fixed learning rate into the model architec-
ture, aiming to discern its impact on image quality. Beyond implementation, I played a pivotal role in
shaping crucial sections of the report, specifically contributing significantly to the Results, Analysis,
Conclusion, and Contribution segments, section 5.1.2. This encompassed synthesizing and interpreting
outcomes, drawing meaningful insights from the experiments conducted, and offering valuable input
into the implications and future directions derived from our findings.

19

	Introduction
	Method
	Experiments
	Dataset
	Evaluation metrics
	Results
	Analysis and discussions
	Model Architecture and Training
	Comparisons
	Discussion

	Conclusion
	Description
	What I Learned

	Contribution
	Code
	Three Convolutional Layer Implementation With Learning Rate Modification
	Three Convolutional Layer Implementation Without Learning Rate Modification
	Linear and Convolutional Latent Space Implementations

	My Contribution

